'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a() , activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X} Details: We have computed the following set of weak (innermost) dependency pairs: { f^#(f(a())) -> c_0() , f^#(X) -> c_1() , g^#(X) -> c_2() , a^#() -> c_3() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , activate^#(n__a()) -> c_6(a^#()) , activate^#(X) -> c_7()} The usable rules are: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a()} The estimated dependency graph contains the following edges: {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} ==> {f^#(X) -> c_1()} {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} ==> {f^#(f(a())) -> c_0()} {activate^#(n__g(X)) -> c_5(g^#(activate(X)))} ==> {g^#(X) -> c_2()} {activate^#(n__a()) -> c_6(a^#())} ==> {a^#() -> c_3()} We consider the following path(s): 1) { activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(f(a())) -> c_0()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(f(a())) -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__a()) -> a() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [5] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(f(a())) -> c_0()} and weakly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(f(a())) -> c_0()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [3] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} and weakly orienting the rules { f^#(f(a())) -> c_0() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} and weakly orienting the rules { activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(f(a())) -> c_0() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [8] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [7] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [2] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(f(a())) -> c_0() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(X) -> n__f(X)} and weakly orienting the rules { g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(f(a())) -> c_0() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] a() = [4] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [3] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [7] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(f(a())) -> c_0() , activate(n__a()) -> a() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(f(a())) -> c_0() , activate(n__a()) -> a() , activate(X) -> X} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , a_0() -> 4 , a_1() -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_0(2) -> 5 , c_1(7) -> 4 , c_1(7) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(8) -> 7 , n__f_1(10) -> 9 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(5) -> 4 , n__g_1(5) -> 5 , n__g_1(9) -> 8 , n__a_0() -> 2 , n__a_0() -> 4 , n__a_0() -> 5 , n__a_1() -> 5 , n__a_1() -> 10 , g_1(5) -> 4 , g_1(5) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , c_0_1() -> 3 , c_0_1() -> 6 , activate^#_0(2) -> 1 , c_4_0(3) -> 1 , c_4_1(6) -> 1} 2) { activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(X) -> c_1()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(X) -> c_1()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__a()) -> a() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(X) -> c_1()} and weakly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(X) -> c_1()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [4] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [8] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [3] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} and weakly orienting the rules { f^#(X) -> c_1() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [4] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [7] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} and weakly orienting the rules { activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(X) -> c_1() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [8] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [7] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(X) -> c_1() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(X) -> n__f(X)} and weakly orienting the rules { g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(X) -> c_1() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [2] a() = [7] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [7] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [3] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(X) -> c_1() , activate(n__a()) -> a() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , f^#(X) -> c_1() , activate(n__a()) -> a() , activate(X) -> X} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , a_0() -> 4 , a_1() -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_0(2) -> 5 , c_1(7) -> 4 , c_1(7) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(8) -> 7 , n__f_1(10) -> 9 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(5) -> 4 , n__g_1(5) -> 5 , n__g_1(9) -> 8 , n__a_0() -> 2 , n__a_0() -> 4 , n__a_0() -> 5 , n__a_1() -> 5 , n__a_1() -> 10 , g_1(5) -> 4 , g_1(5) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , c_1_0() -> 1 , c_1_0() -> 3 , c_1_1() -> 6 , activate^#_0(2) -> 1 , c_4_0(3) -> 1 , c_4_1(6) -> 1} 3) { activate^#(n__g(X)) -> c_5(g^#(activate(X))) , g^#(X) -> c_2()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , g^#(X) -> c_2()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__a()) -> a() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(X) -> c_2()} and weakly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(X) -> c_2()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [4] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [8] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [3] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__g(X)) -> c_5(g^#(activate(X)))} and weakly orienting the rules { g^#(X) -> c_2() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__g(X)) -> c_5(g^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [4] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [7] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} and weakly orienting the rules { activate^#(n__g(X)) -> c_5(g^#(activate(X))) , g^#(X) -> c_2() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [8] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [7] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , g^#(X) -> c_2() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(X) -> n__f(X)} and weakly orienting the rules { g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , g^#(X) -> c_2() , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [2] a() = [7] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [7] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [3] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , g^#(X) -> c_2() , activate(n__a()) -> a() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , g^#(X) -> c_2() , activate(n__a()) -> a() , activate(X) -> X} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , a_0() -> 4 , a_1() -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_0(2) -> 5 , c_1(7) -> 4 , c_1(7) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(8) -> 7 , n__f_1(10) -> 9 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(5) -> 4 , n__g_1(5) -> 5 , n__g_1(9) -> 8 , n__a_0() -> 2 , n__a_0() -> 4 , n__a_0() -> 5 , n__a_1() -> 5 , n__a_1() -> 10 , g_1(5) -> 4 , g_1(5) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , g^#_0(2) -> 1 , g^#_0(4) -> 3 , g^#_1(5) -> 6 , c_2_0() -> 1 , c_2_0() -> 3 , c_2_1() -> 6 , activate^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(6) -> 1} 4) {activate^#(n__g(X)) -> c_5(g^#(activate(X)))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X)))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__a()) -> a() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [2] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__g(X)) -> c_5(g^#(activate(X)))} and weakly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__g(X)) -> c_5(g^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [1] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} and weakly orienting the rules { activate^#(n__g(X)) -> c_5(g^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [4] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [3] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [3] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(X) -> n__f(X)} and weakly orienting the rules { g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [1] a() = [6] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [5] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [1] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [11] c_4(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [7] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__g(X)) -> c_5(g^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , a_0() -> 4 , a_1() -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_0(2) -> 5 , c_1(7) -> 4 , c_1(7) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(8) -> 7 , n__f_1(10) -> 9 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(5) -> 4 , n__g_1(5) -> 5 , n__g_1(9) -> 8 , n__a_0() -> 2 , n__a_0() -> 4 , n__a_0() -> 5 , n__a_1() -> 5 , n__a_1() -> 10 , g_1(5) -> 4 , g_1(5) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , g^#_0(2) -> 1 , g^#_0(4) -> 3 , g^#_1(5) -> 6 , activate^#_0(2) -> 1 , c_5_0(3) -> 1 , c_5_1(6) -> 1} 5) {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a()} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X)) , activate(n__a()) -> a() , activate(X) -> X , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , f(X) -> n__f(X) , g(X) -> n__g(X) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X)))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__a()) -> a() , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [2] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} and weakly orienting the rules { activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_4(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [1] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} and weakly orienting the rules { activate^#(n__f(X)) -> c_4(f^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [4] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [3] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [3] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] a() = [0] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [0] g(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f(X) -> n__f(X)} and weakly orienting the rules { g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [1] a() = [6] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] n__a() = [5] g(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [11] c_4(x1) = [1] x1 + [7] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(activate(X))} Weak Rules: { f(X) -> n__f(X) , g(X) -> n__g(X) , f(f(a())) -> c(n__f(n__g(n__f(n__a())))) , a() -> n__a() , activate^#(n__f(X)) -> c_4(f^#(activate(X))) , activate(n__a()) -> a() , activate(X) -> X} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , a_0() -> 4 , a_1() -> 5 , c_0(2) -> 2 , c_0(2) -> 4 , c_0(2) -> 5 , c_1(7) -> 4 , c_1(7) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(8) -> 7 , n__f_1(10) -> 9 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(5) -> 4 , n__g_1(5) -> 5 , n__g_1(9) -> 8 , n__a_0() -> 2 , n__a_0() -> 4 , n__a_0() -> 5 , n__a_1() -> 5 , n__a_1() -> 10 , g_1(5) -> 4 , g_1(5) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , activate^#_0(2) -> 1 , c_4_0(3) -> 1 , c_4_1(6) -> 1} 6) {activate^#(X) -> c_7()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] a() = [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] n__a() = [0] g(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(X) -> c_7()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(X) -> c_7()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(X) -> c_7()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] a() = [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] n__a() = [0] g(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [4] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(X) -> c_7()} Details: The given problem does not contain any strict rules 7) {activate^#(n__a()) -> c_6(a^#())} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] a() = [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] n__a() = [0] g(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(n__a()) -> c_6(a^#())} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(n__a()) -> c_6(a^#())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__a()) -> c_6(a^#())} Details: Interpretation Functions: f(x1) = [0] x1 + [0] a() = [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] n__a() = [0] g(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(n__a()) -> c_6(a^#())} Details: The given problem does not contain any strict rules 8) { activate^#(n__a()) -> c_6(a^#()) , a^#() -> c_3()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] a() = [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] n__a() = [0] g(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [0] c_3() = [0] activate^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {a^#() -> c_3()} Weak Rules: {activate^#(n__a()) -> c_6(a^#())} Details: We apply the weight gap principle, strictly orienting the rules {a^#() -> c_3()} and weakly orienting the rules {activate^#(n__a()) -> c_6(a^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#() -> c_3()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] a() = [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] n__a() = [0] g(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] g^#(x1) = [0] x1 + [0] c_2() = [0] a^#() = [1] c_3() = [0] activate^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { a^#() -> c_3() , activate^#(n__a()) -> c_6(a^#())} Details: The given problem does not contain any strict rules